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ABSTRACT

—r: s s s et

The basic requirements for the development of a six-degree-
of-freedom digital simulation model are outlined, and three co-
ordinate systems are specified which are both adequate and con-
venient for such a development. The nontrivial ccordinate trans-
formations ar~ shown,

The equations of motion are developed, with indications of
the standard assumptions. The principal forces and moments are
discussed. The thrust misalignment effects are derived and the
formulas for the jet damping moment are included.

Aerodynamic forces and moments are discussed, and the recess-
ary aercdynamic angles are defined. These forces and moments are
described from the stability derivative point of view, and compon-
ents of the major forces and moments are derived.
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INTRODUCTION

Unti) approximately ten years ago, the study of rocket tra-
jectories was primarily academic, with only the fundamental
concepts considered and very liberal assumptions made. Then,
during thc IGY and Pre-IGY firings of unguided soundirz rockets
it was discovered, somewhat embarrassingly so, that simple
"Kentucky Windage" ‘'ith the carefully moistened finger thrust
aloft was rnot adequate to determine the course of an unguided
rocket and that a more objective technique was rcquired.

Some of the early research in trajectory simulation and wind
effect ~alculations for unguided rockets was performed by Lew..
(1949), Rachele (1958), and Daw (1958). These early efforts,
although based upon restrictive assumptions, greatly increased
man's knowledge about the problem and provided techniques for
support of rocket firings which were used for several years with
reasonable success.

ek

The ever-expanding capability of the electronic computer
has augme .ed research efforts in trajectory simulations by
providing the computational resources required for prucise tra-
jectory simulations. During the past five years several satis-
factory trajectory simulation models have been developed; some
of these are listed in the references.

There have been two unfortunate occurrences during this
rapid advance in the state of the art: (1) in the majority of
the literature the development is directed toward the solution
of « particular problem with littie or no attention given to the
solution of the basic problem, and (2) the existing literature
has been published as technical reports of limited distribution
which are difficult to obtain.

|

This paper is designed to outline the basic considerations
for the development of a computer program for trajectory simula-
tions. The discussion is not pointed toward the solution of a
particular prodblem; however, in certain instances, the techniques
for such restrictions are outlined.
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COORDINATE SYSTEMS AND TRANSFORMATIONS

The number and nature of the coordinate systems utilized in
a simulation model depend primarily upon the complexity of simula-
tion requirements. Three coordinate systems are presented here
which are adequate for most trajectory simulations.

The output from the simulation, as well as tie initial condi-
tions, is usually desired with reference to a ground-fixed launcher.
Tuis system will be referred to as the launcher coordinate system.
The only convenient system in which to compute the aerodynamic
forces and moments is a system (commonly called a body system)
which is affixed to and moves with the rocket.

The launcher system (denoted X', Y', Z') has its origin at
ths launcher and rotates with the earth. The positive X' axis
points east; the positive Y' axis points north; and the positive
2' axis points "up". The body system (x, y, z) has its origin
at the center of gravity, C , of the missile. The x axis coincides
with the longitudinal axis fnd is positive toward the nose. Pre-
cise orientation of the y and z axes is somewhat irrelevant as
long as the system remains right-handed. The inertial system (X,
Y, Z) has its origin at the center of the earth. This system is
oriented so that the X and Y axes lie in the equatorial plane and
the Z axis is coincident with the earth's axis of rotation and
positive toward the North Pole. This system does not rotate with
the earth. Although the exact orientation of the X and Y axes is
somewhat arbitrary, it is convenient to define one of these such
that it initially passes through either the longitude of the launch-
er or through longitude 0.

A linear transformation between any two of these systems will
be denoted by sz where the ' ft-hand subscript denotes the domain
of the wapping. Since the coordinate systems are all orthogonal,
the inverse of the transformation is just the transpose. The trans-
formation T.,. , is easily determined by geometric and trigonometric
csnsiderati§&§. This transformation depends upon the earth-model
considered (e.g. spherical, oblate spheroid, pear-shaped, etc.) and
the earth's rotation.

The ransformation T is not so easily obtained. Two methods
will be given below for ogiiining this transformation. The develop-
ment of these methods is lengthy and will be omitted. The first
method is based on Euler angles, and a development can be found in
much of the literature, e.g., Lass (1950). The second method is based
on direction cosines; a development has been presented by Duncan (1966)
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The x-y plane will intersect the X'-Y' plane in a line,
called the nodal line N. Let @ be the angle between the z and
Z' axes, ¢ the angle between the X' and N axes, and ¢ the angle
between the N and x axes. (This is but one of several ways by
which the Euler angles can be defined.) The angles, ¢, 0, ¢
completely specify the relative orientation of the two systems;
hence, the rotation matrix, the matrix of T K can easily be
determ1ned once the values of these angles afe determined.

Let & define the angular velocity of the x, y, z system
relative to the X, Y, Z system. Then

w = pi + qj + rk, (1)

where i, j, and k are unit vectors along the x, y, z axes. It is
shown by Lass (1950) that,

. . do
p= It sin @ sin ¢ + It cos ¢
dy . do
Q=3¢ sin @ cos ¢ - at sin ¢ (2)
dy do
r-d—t—cosO+a—t-

If the Euler angle technique is used to determine the trans-
formation T,, , the system of equations (2) becomes three of the
equations o‘ Botion in the simulation model.

- The second technxque employs d1fferent1a1 equations involving
w and the direction cosines. Let (L ), (m,, =, m,) and

(n,, n,, n.) be the respective dxrecixon cos{nes of thé x,”y, and
z 8xes“in the X, Y, Z system. Then the matrix of szx is

. a—
.rﬂ L L

m; m, my (3)




LAY LY.

It has been shown by Duncan (1966) that

li = m, -qn, i=1,2,3
milpni-rli 1‘1) 213 (4)
n, = qli - pmy i=1,2,3

If the second method is used to determine the transformation
T,,., then the system of equations (4) becomes nine of the equations
¥2 . . . .
o Eot1on in the simulation model.

Both of the methods discussed above have certain undesirable
features. In method one it is possible for one of the Euler angles
to bccome undefined; method two requires the integration of a larger
system of equations.

THE EQUATIONS OF MOTION

The equations involving the moments of inertia, aerodynamic
forces and moments, and the thrust forces are greatly simplified
if expressed in the body coordinate system; hence, this system will
be used. The two basic equations which define the motion of a rigid
vody are

+ -

F e g @, (s)
and

- d .

Mp = 5o Q) (6)
where F represents the external forces,

M represents the external moments,

T
-
H represents the angular momentum.




Numerical analysis of these vector equations requires their
resolution into vector components and definition of the scalar
coefficients. These maripulations are discussed in detail in many
texts in Mechanics. The essential steps are reviewed here, however,
for completeness.

To determine the translational acceleration, consider a point
P defined in the (x, y, z) system by the vector r. Let the origin
of the (x, y, z) system !ith respect to the X, Y, Z system be
specified by the vector R.

Then

->
T = xkx + yky + zkz,
R« Xky + Yk ¢ Zk, . (7)

In the development of the equations of motion the fcrces
are usually agsumed to act through the center of gravity of the
rocket, i.e. r = 0, It is more convenient to express the velocity
of the origin of thc body system in body axis coordinates; these
are usually denoted by u, v, w.

-

The equation ® = mV is true in the X, Y, Z system but must
be modified if the forces are to be computed in the body system.
To this end, let S be a vector in the (x, y, z) system. Then

DS dsS
anﬁ-ouxs (8)

where the symbol 0 indicates diff_.rentiation in the (X, Y, Z)
system and it ref%! to the body system,
Now the first equation of motion becomes, in component form:
Fx = m(U - TV + gw),

Fy = B(v - wp + ur), (9)

Fz = a(w - uq + vp).




These equations determine the translational motion.

The equations expressing the rotational motion are obtained
in a straightforward manner. The angular momentum of a body
about its center of gravity is given by

-+
H= [Ixxp - Ixyq - Ixzr]kx + [-Ixyp + Iyyq -Iyzr]ky
+ [-Ixzp - Iy7q + Izzr]kz. (10)

It is the general practice at this point in the derivation
of the equations of motion to assume that the body axes are
principal axes of inertia. Under this assumption one has

H=1 pk + 1 ak, ¢+ 1,1k, (1)
Hence,
? . . . . .
Ha= (I_p+I pk + [Iyyq + Iyyq]ky «[1,r+1 rlk,
+'Ixxkx * Iyyky * Izzkz (12)

Now k_ =wxk , k = wxk , k. = wxk_ . Hence
x x’ "y y’ 'z z
* . .
H = [Ixxp + 1 p+ (I - Iyy)qr]kx

+ [Iyyq + Iyyq + (I, - Iu)pr]ky (13)

+ [Izzr + 11+ (Iyy - Ixx)pq]kz'

The x, y, z components of the total external moment are commonly
known as L, M, N, respectively. Now the rotational equation of
motion becomes, in component form,




LT p+lups (- Iyy)qr
M= Iyyq + Iyyq + (Ixx - Izz)pr 14)

N=I r+1 r+ (I
ZZ 22 3

yy I, JPd-

FORCES AND MOMENTS

The forces and moments acting on a rocket are due to three
specific effects. These are the thrust, the gravitational attrac-
tion, and the aerodynamic features of the rocket. The forces and
moments are expressed in the body coordinate system.

Gravitational Effects:

The gravitational force, mE, is easy to compute. However,
the exact magnitude and direction of g depend upon the earth model
chosen for the simulation. Since this subject is discussed quite
thoroughly in the literature it will not be discussed here.

Thrust Effects:

Let m be the mass of the rocket including the unspent fuel
and let Am be the change in mass {due to burning of fuel) during
a small time interval At. By the law of conservatioa of momentum,
the momentum at time t is equal to that at time t + At,

mv o= (m o+ Am)(V + AV) + Am(i/'e -9 (15)

where V_ is the velocity, in the body system, of the exit gases.
Hence, e - mV_., This is the force on the rocket due to the
changing mcmentum.

Besides mV_ there is an additional force due to the differ-
ence between the Sressure at the exit nozzle and the atmospherit
pressure. If the pressure at the exit nczzle is P_, the atmos-
pheric pressure P_, and the area of the exit nozz1& A_, then this
additional force is Ae(Pe - Pa)’ giving a total thrust of




Bt SR e

.o
Ts= mVe * (Pe - Pa)Ae. (16)

If the thrust is measured at a test stand at an atmospheric
pressure Ps it would be

t.

Tet. ® mv; + AP, - Ps.t.)' (17)
Hence,

TeaTge® Ae(ps.t. - Pyl (18)

Since a rocket rotates about a transverse axis during burning,
the gases must be accelerated laterally as they flow through the
nozzle. This lateral acceleration produces the so-cailed jet damp-
ing moment., The following expression for the jet damping moment
was derived by Brown et al. (1961):

M - m(c;' - l;)wp, (19)

where m is the mass flow rate, w_ is the instantaneous pitching
velocity, £. is the distance betReen the vehicle's C_ and the exit
nozzle, and’£ is the distance between the C_ of theBvehicle and the
propellant Cg? g

The components of this moment are, for a symmetric rocket,

M ., = m° t? - £2 q
(20)

. = T lz - .ez .

NJ m(J )r

The rocket thrust is capable of producing components of force
and moment along each of the body axes. These may be due to a mis-
alignment of the thrust vector with respect to the x-axis or to an
off=center installation of the rocket motor. Let x., Y and 24 be
the X, y, z coordinates of the i-th exit nozzle. Lét Ti be the
thrust vector of the i-th exit nozzle. Suppcose the i-th thrust vector




is oriented as shown in Fig. 1. Then the components of the i-th
thrust vector are

Ti €osA

ix T.
i
Tiy = Ti SlnXT. cos¢T‘ (21)
i i
Tiz = Ti 51nAT. 51"¢T.
i i

The components of the total thrust vector T = Z:¥i
i
are T, = g T, Ty = g Tiy’ T, = g T,,. It follows immediately

+> .
from the relation Mi = ;i x ?i that the components of the i-th
moment are

n
<
[N
-3
[N
~
$
[
[
<

(22)

=
n
N
-3
'
ted
-3

* L)
where r, = (xi, Yy zi) and LTi, MT.’ and NT. are the i-th
thrust moments about the x, y, and 3 axes, réspectively. The

->
components of the total thrust moment M= ) Mi are
i

Ly = ] LTi, My = g MTi, Np = ] No . (23)

i i i

Aerodynamic Forces and Moments

There are several angles which are used to calculate the
aerodynamic forces and moments. These angles are shown in Figure
2. They can be expressed in terms of the velocity components as
follows., Let w_, w , w_be the x, y, z, components of the wind.
The components 8f the vélocity of the rocket relative to the wind
are u' = y - wx, vis=v-w,w =w-w and the relative speed

. 1y 2 12 Y 2% y
isv, = [u')® + (v')° + (w')°]?. The angle of attack, a, the

9




FIGURE 1.

FIGURE 2. AERODYNAMIC  ANGLES
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angle of sideslip, B8, and the absolute angle of attack, §, are
defined by

-lcw!
a = tan [G7J

-1 v

g = tan [ ] (24)
Jw)? + w)?

§ = tan

l[ﬁ%f¢(wﬁ]
u' '

The auxiliary angle of attack, a®, and the auxiliary angle of
sideslip, 8%, are given by

'
* L

-1
a = tan [ ] (25)
/(U')z + (\r')2

* -1 v'
B = tan [F

The general technique for specifying the aerodynamic forces
and mements utilizes the concept of stability derivations. Stability
derivations have been discussed in considerable detail by Neilsen
(1960). The basic ideas and the application of the concept will be
presented below.

The formulas for computing the forces and moments are
F = qu'S

My = Ca'Sd (26)

where C. and are dimensionless coefficients, q' is the dynamic
pressuri, S and d are the reference ar:as and refererce length,

respectively. The above equations are usually written in compon-
ent form. They become

11




Yoo

= ]
F qu S,

x
Fy = qu's,
F, = Czq'S, (27)
M =Cpq'Sd,
N = qu'Sd,
L =Cpq'Sd,
where C_, , , and Cp are considered to be functions of

c,c,c,C
several*var{ablés. mThenstability derivations are simply partial
derivatives of these functions. The procedure by which stability
derivatives are applied is best described by an

example. Suppose Cm = f(al, Upy oty an). Let Cmqj = af/auj and
suppose C_ i5 known for some value (o, vees @__); call this

value Cmo? Then if each of the aj's éR;nges by"8 small amount duj

n
C,=C.* L Cp do;. (28)
i=] i

It is usually assumed that (a, , a, , ..., a_ ) = (0, ... 0) and
that C__ is linear for all rei?izag?e neighbgghoods of this point.
Under Mis assumption da, is approximated by ay and the above equa-
tion becomes

n
C.=C + ] aC (29)
m mo .l imay

The Forces and Moments due to Air Resistance

The specific stability derivatives included in the development
of a simulation model depend upon the purpose of the computation and
the details required therein. (The availability of numerical values

12




for the stability derivatives is often another controlling factor.)
Since a derivation of the applications of all the various combina-
tions of the stability derivatives defined by Neilsen (1960) would
lead to voluminous formulations of questionable value, only those

resulting from the effect of air resistance will be discussed here.

The force due to air resistance is broken into components
parallel to and perpendicular to the x-axis; these componenis
are referred to as the axial and normal force, respectively. The
standard notations for the dimensionless coefficients are C, and
C,,. (The force is sometimes resolved into a different refeQence
f¥ame and the components are referred to as drag and lift.) The
normal force lies in the plane of the x-axis and the vector;
the direction is such that the force tends to decrease §.

Most rockets possess a property called 90-degree roll symmetry.
This means that the physical characteristics of the rocket remain
unchanged if the vehicle is rotated 90° about the x-axis. Thus for
the symmetric vehicle, C = C_ and C_ = C_; hence, the stability
derivatives of these funftionf are eaual.n

The coefficient C_ is primarily a function of the angle §. If
it is assumed, and it Often is, that C_ is a function of & alone
then it is easy to see from Figure 2 that the components of the
normal force and the moment contributions due to this force are

Cy = . Cno sin 8,

]

- Cm sina , (30)

(¢]
"

*
C ==+« Cm sina ,

(g}
.

n® " Cm sin 8

where C-n is the moment coefficient which results from the force.

The rotation of the vehicle generates a damping moment (due
to the air resistance). The standard formulation of the stability
derivatives is:




B T S

d
Cag " 3‘3./“%\7‘) (31)

rd
CI!‘ = 3C-/ 3(—2'9:)

The above formulations give the following expressions for
the forces and moments due to air resistance under the assump-
tion of a 90° roll symmetric vehicle:

Fx = qu's
Fy = 'cna sin 8q'S

F, = -C,_ sin a’q'S (32)
L = [cy + ¢ Bla'sd
° a
» d .
M = [C.a sin a” » qu (%v:)]q Sd

N = [-c sin8+cC (Gla's d.
a

CONCLUSIONS

The principal considerations in the development of a six-degree-
of-freedom trajectory simulation model have been discussed. Although
sny particular simulation model may include several factors not
discussed in this paper, it must include a: 1 follow the basic prin-
ciples outlined .ierein. This treatise should provide a suitable back-
ground to the researcher who is required to develop s simulation model
and should indicate how the various idiosyncracies of his particular
probis= may be handled.

L
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